

Roll No.

ANNA UNIVERSITY (UNIVERSITY DEPARTMENTS)

B.E. / B. Tech / B. Arch (Full Time) - END SEMESTER EXAMINATIONS, APR / MAY 2025

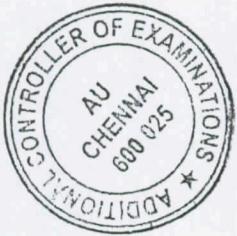
**B.E BIOMEDICAL ENGINEERING
IV SEMSTER**

**BM23S02 SKILL DEVELOPMENT COURSE – LEVEL II DESIGN AND DEVELOPMENT OF LAB
PROTOTYPE FOR BIOMEDICAL APPLICATIONS
(Regulation 2023)**

Time: 1.5 hrs.

Max. Marks: 50

PART- A (3 Marks x 10 = 30 Marks)
(Answer all Questions)


Q. No.	Questions	Marks																																		
1	Determine the output voltage of a differential amplifier for the input voltages of $250\mu\text{V}$ and $150\mu\text{V}$. The differential gain of the amplifier is 3000 and the value of CMRR is 10000.	3																																		
2	For the circuit given find the source resistance if $V_s = 5 \text{ V}$, $Z_{in} = 1 \text{ Mohm}$ and $I = 0.02\text{mA}$.	3																																		
3	<p>Calculate the Bandwidth from the tabulation. For $v_{in}=1\text{mV}$.</p> <table border="1" style="margin-left: 20px;"> <thead> <tr> <th>Frequency (Hz)</th> <th>$V_{out} (\text{mV})$</th> </tr> </thead> <tbody> <tr><td>1</td><td>15.3</td></tr> <tr><td>2</td><td>21</td></tr> <tr><td>3</td><td>31.72</td></tr> <tr><td>5</td><td>39.25</td></tr> <tr><td>10</td><td>45.65</td></tr> <tr><td>50</td><td>45.75</td></tr> <tr><td>75</td><td>45.6</td></tr> <tr><td>100</td><td>45.3</td></tr> <tr><td>500</td><td>45.88</td></tr> <tr><td>1k</td><td>45.94</td></tr> <tr><td>3k</td><td>46.13</td></tr> <tr><td>5k</td><td>46.25</td></tr> <tr><td>10k</td><td>46.9</td></tr> <tr><td>60k</td><td>39.3</td></tr> <tr><td>75k</td><td>35.4</td></tr> <tr><td>100k</td><td>31.9</td></tr> </tbody> </table>	Frequency (Hz)	$V_{out} (\text{mV})$	1	15.3	2	21	3	31.72	5	39.25	10	45.65	50	45.75	75	45.6	100	45.3	500	45.88	1k	45.94	3k	46.13	5k	46.25	10k	46.9	60k	39.3	75k	35.4	100k	31.9	3
Frequency (Hz)	$V_{out} (\text{mV})$																																			
1	15.3																																			
2	21																																			
3	31.72																																			
5	39.25																																			
10	45.65																																			
50	45.75																																			
75	45.6																																			
100	45.3																																			
500	45.88																																			
1k	45.94																																			
3k	46.13																																			
5k	46.25																																			
10k	46.9																																			
60k	39.3																																			
75k	35.4																																			
100k	31.9																																			

4	Design a potential divider circuit at the input stage of a preamplifier to get a 2 mv signal to a differential input. Choose the correct input value and source voltage accordingly.	3
5	What should be the ideal characteristics of Biopotential amplifier?	3
6	Design the ideal filter circuit to remove the common mode signals.	3
7	Calculate the Gain of a preamplifier using AD620 when its $R_g = 2.2 \text{ K ohm}$.	3
8	If $V_{out} = 9V$, $I = 0.7 \text{ mA}$ and $R_o = 1 \text{ Kohm}$. Find the output impedance value.	3
9	Which microcontroller is best opted for continuous bio signal acquisition? Why?	3
10	In PCB design using software tools mention the steps to create a PCB layout from circuit.	3

PART- B (5 Marks x 4 = 20 Marks)

(Answer any 4 Questions)

Q. No.	Questions	Marks
I.	Design an ECG amplifier with the frequency of 02 Hz to 75 Hz and gain of 500. Choose the ideal stages to achieve gain and frequency.	5
II.	Design an ECG amplifier with a gain of 700. Choose the frequency of amplifier based on signal characteristics.	5
III.	Design a preamplifier for the gain of 40. Draw its tentative frequency response and find its gain, CMRR, input impedance and output impedance. Assume the current values for calculation.	5
IV.	Design an EMG amplifier with the frequency range of 15 to 600Hz and gain of 1500.	5
V.	Given that CMRR 100 dB. Input common mode voltage is 12V. Differential voltage gain is 4000. Calculate output common mode voltage.	5
VI.	Design the suitable level shifter circuit used for bio signals transmission from board to microcontroller.	5

